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(iii) False. Let a = 2. Then a® =64 =106+ 4 = 64 = 4 (mod 6).
(iv) False. Let a = 2. Then, a* =16 =4-4+0= 16 = 0 (mod 4).

(vii) True. On the one hand, n = 1 (mod 100) <= n = 100p + 1, where p € Z.
On the other, n =4 (mod 1001) <= n = 1001q + 4, where q € Z.
Hence, 100p + 1 =1001g + 4 <~—
3 = 100p —1001r

= 100p — (1000 + 1)r

= 100p — 10007 — r

= 100(p — 10r) — r
Hence, a possible solution is:

p—10r =1 and r = 97
p—10r=1 < p—10-97=1 <= p=971

Substituting p in our first equation we find that the number n is:
n=100-p+1=100-971+1=97100+1 = 97101

Indeed, it is the case that 97101 = 1 (mod 100) and 97101 = 4 (mod 1001)
(viii) False. Let p = 5,a = 3,m = 5 and n = 0. Clearly 5 is prime. Also, m = n (mod p) since 5|5 — 0. But,
a™ =3%=243 =0 (mod 3) and 3° = 1 = 1 (mod 3). Hence, 3° # 3° (mod 3).
) 3z =2 (mod 5) < x =4+ 5k for some k € Z <= z =4 (mod 5)
) Tx =4 (mod 10) <= x =2+ 10k for some k € Z <= x =2 (mod 10)
(iii) 243z 4+ 17 =101 (mod 725) <= x = 63 + 725k for some k € Z <= 1z = 63 (mod 725)
) 4z + 3 =4 (mod 5). The solution is z =4 since 4z +3=4-4+3=16+3=19=5-3+4 =4 (mod 5). The
general solution is therefore x =4 45 - k for some k € Z <= x =4 (mod 5).
(v) 62 +3 =4 (mod 10) <= 62 =1 (mod 10). But, gcd(10,6) = gcd(10 — 6,6) = ged(6,4) = ged(6 — 4,4) =
gcd(4,2) = ged(4 — 2,2) = ged(2,2) =2 > 1 and 2 does not divide 1. Hence, this system has no solution.
(vi) 62 +3 =1 (mod 10). The solution is = 3 since 6z +3 =6-34+3 =18+ 3 =21 =1 (mod 10). The general
solution is therefore © = 3+ 10 - k for some k € Z <= z =3 (mod 10)

Since 100 = 2-49+2, 10190 = 10249+2 = 10249.10%. Now, by the same fact used before, 102> = 2 (mod 7). Moreover,
10249 = 10277 Exponent rule
1077 Exponent rule

10 (mod 7) By Fermat’s little theorem, since 7 is prime
3 (mod 7)

Combining this results we obtain: 101°° = 3.2 = 6 (mod 7). Therefore, the remainder after dividing 10%° by 7 is 6.

The solutions depend on whether m is odd or even.

If m is odd, then the solutions are r = 0 (mod m), Since m|r <= r = m-k for some k € Z and then 2r = 2(m-k) =0
(mod m). Note that in the case when m is odd these are the only solutions. Indeed, if anther solution r = m -k +m/,
where m’ € Z exists, then 2r = 2(m-k+m')=2-m-k+2-m' =0+ 2-m’ (mod m), which is never congruent to 0
since m is odd and does not divive 2 - m’ (an even number).

If m is even, then the solutions are r = % (mod m), since m|r — % <= r=m-k+ 5. Indeed, 2r =2(m-k+3) =
2-m-k+m =0 (mod m). These are all the solutions (you can just vary k freely).

Since ged(a.m) =d > 1 then dla <= a =dd' and djm < m =dm/'.
By definition, ax = b (mod b) <= ax = b+ mk for some k € Z. Rearranging the equation: ax —mk = b. Since d is
the ged(a, m), then da’x — dm'k = b < d(a’x — m'k) =b <= d|b, so if d does not divide b there is no solution.



(1.90) 22 =1 (mod 21) <= 2? =1 (mod 7) AND 22 =1 (mod 3). The following table summarizes the possibilities for z:

r=]0]1]|2 z=|0|1]2]|3]4 ) 6
22=10[1]4 22=10[1]4[9]16]25] 36
2= (mod3) [0 |1]1 >?=(mod7) |0[1[4]2]2 [4 |1

z=10Rz=2 z=10Rz=6

Therefore, all the solutions are given by solving four different systems:

z=1 (mod 3) — . .
{ =1 (mod7) = ’ =1 (mod 21) ‘ by the Chinese Remainder Theorem.

r=1 (mod3)=z=3k+1
z=6 (mod7)=3k+1=6 (mod7) < 3k=5(mod 7) < k =4+ Tk for some k' € Z

Hence, the solutions are: © =3(4+ 7k') +1 =12+ 21k' + 1 = 21k’ + 13 <— ’ x =13 (mod 21) ‘

r=2 (mod3)=z=3k+2
z=1 (mod7)=3k+2=1(mod7) < 3k=-1(mod 7) < k =2+ Tk for some k' € Z

Hence, the solutions are: © =32+ 7k') +2 =6+ 21k' + 2 = 21k’ + 8 <~— ’ x =8 (mod 21) ‘

'

Hence, the solutions are: © = 3(6 + 7k') + 2 = 18 + 21k’ + 2 = 21k’ + 20 <— ’ x =20 (mod 21) ‘

2 (mod3)=z=3k+2
6 (mod7)=3k+2=6 (mod7) <= 3k=4 (mod7) < k =06+ Tk for some k' € Z

(1.91) (i) Since ged(5,1) = ged(8,3) = 1; both of the following equations have a solution by their own.

r=2 (mod5)=z=>5k+2
3r=1 (mod 8) = 3(5k+2)=1 (mod 8) < 15k = —5(mod 8) <= k = —3 + 8k’ for some k' € Z

Hence, the solutions are: z =5(—3 4+ 8k’) +2 = —15 + 40k’ +2 = 35k’ — 13 <— ’ x = —13 (mod 40) ‘

(ii) Since ged(5,3) = ged(2,3) = 1; both of the following equations have a solution by their own.

3x=2 (mod5)=z=>5k+4
2c=1 (mod 3) = 2(5k+4) =1 (mod 3) < 10k = —7(mod 3) < k =2+ 3k’ for some k' € Z

Hence, the solutions are: © =5(2+3k') +4 =10+ 15k' + 4 = 15k" 4+ 14 <— ’ x = 14 (mod 15) ‘

(1.92) We want to find the smallest positive integer = such that:

r=4 (modb) <= x=5k+4
x=3 (mod7)=5k+4=3(mod)7 < 5k =-1 (mod)7 <= k =4+ Tk for some k' € Z
x=1 (mod?9)

The solutions for the first two equations are: x = 5(4 + 7k’) +4 = 20 + 35k’ + 4 = 35k’ + 24 <= 2 =24 (mod) 35

Now we can solve the simpler system:

z=24 (mod 35) =z =35k+24
x=1 (mod9) = 35k+24=1 (mod 9) <= 35k = —23(mod 9) < k =2+ 3k’ for some k' € Z

But, —23 =4 (mod 9), since —23 —4 = —27 =9 (=3). Also, 35k = 27k + 8k = 8k (mod 9).
We can restate the equation 35k = —23(mod 9) as 8k =4 (mod 9). The solutions as k = 5 + 9%'.
Hence, the solutions are: @ = 35(5 + 9K') + 24 = 175 + 315k + 24 = 315k’ + 199 <= |2 = 199 (mod 315)|




(1.95)
r =12 (mod 25) = = =25k + 12
x=2 (mod 30) = 25k + 12 =2 (mod 30) < 25k = —10 (mod 30)

But —10 = 20 (mod 30), since it is true that 30| — 10 — 20. Hence, we can rewrite the last equation as

25k = 20 (mod 30) <= k = 2+ 30k’

Hence, the solutions are: x = 25(2 + 30k’) 4+ 12 = 50 + 750k’ + 12 = 750k’ + 62 <= ’ x = 62 (mod 750) ‘

(1.96) Let x and y be two solutions. Then both satisfy the following systems of equations:

{xzb (mod m) {b

z=b  (modm’) b

(mod m)
(mod m)

y  (mod m)
y (mod m')

= Transitivity of mod { i

Y
)

In particular, the last equations mean that m|x —y and m/|z — y. Since any integer that is divisible by m and m’ is
also divisible by I = lem(m,m'), then llz —y <= x =y (mod I)



